myogenic - ορισμός. Τι είναι το myogenic
Diclib.com
Λεξικό ChatGPT
Εισάγετε μια λέξη ή φράση σε οποιαδήποτε γλώσσα 👆
Γλώσσα:

Μετάφραση και ανάλυση λέξεων από την τεχνητή νοημοσύνη ChatGPT

Σε αυτήν τη σελίδα μπορείτε να λάβετε μια λεπτομερή ανάλυση μιας λέξης ή μιας φράσης, η οποία δημιουργήθηκε χρησιμοποιώντας το ChatGPT, την καλύτερη τεχνολογία τεχνητής νοημοσύνης μέχρι σήμερα:

  • πώς χρησιμοποιείται η λέξη
  • συχνότητα χρήσης
  • χρησιμοποιείται πιο συχνά στον προφορικό ή γραπτό λόγο
  • επιλογές μετάφρασης λέξεων
  • παραδείγματα χρήσης (πολλές φράσεις με μετάφραση)
  • ετυμολογία

Τι (ποιος) είναι myogenic - ορισμός

HOW ARTERIES AND ARTERIOLES REACT TO AN INCREASE OR DECREASE OF BLOOD PRESSURE TO KEEP THE BLOOD FLOW WITHIN THE BLOOD VESSEL CONSTANT
Myogenic response; Bayliss effect; Bayliss Effect; Myogenic contraction; Myogenic
  •  The importance of the Bayliss effect in maintaining a constant capillary flow independently of variations in arterial blood pressure

myogenic         
[?m???(?)'d??n?k]
¦ adjective Physiology originating in muscle tissue (rather than from nerve impulses).
Myogenic mechanism         
The myogenic mechanism is how arteries and arterioles react to an increase or decrease of blood pressure to keep the blood flow constant within the blood vessel. Myogenic response refers to a contraction initiated by the myocyte itself instead of an outside occurrence or stimulus such as nerve innervation.
Myogenic regulatory factors         
GROUP OF PROTEINS REGULATING MYOGENESIS
Myogenic regulatory factor
Myogenic regulatory factors (MRF) are basic helix-loop-helix (bHLH) transcription factors that regulate myogenesis: MyoD, Myf5, myogenin, and MRF4.

Βικιπαίδεια

Myogenic mechanism

The myogenic mechanism is how arteries and arterioles react to an increase or decrease of blood pressure to keep the blood flow constant within the blood vessel. Myogenic response refers to a contraction initiated by the myocyte itself instead of an outside occurrence or stimulus such as nerve innervation. Most often observed in (although not necessarily restricted to) smaller resistance arteries, this 'basal' myogenic tone may be useful in the regulation of organ blood flow and peripheral resistance, as it positions a vessel in a preconstricted state that allows other factors to induce additional constriction or dilation to increase or decrease blood flow.

The smooth muscle of the blood vessels reacts to the stretching of the muscle by opening ion channels, which cause the muscle to depolarize, leading to muscle contraction. This significantly reduces the volume of blood able to pass through the lumen, which reduces blood flow through the blood vessel. Alternatively when the smooth muscle in the blood vessel relaxes, the ion channels close, resulting in vasodilation of the blood vessel; this increases the rate of flow through the lumen.

This system is especially significant in the kidneys, where the glomerular filtration rate (the rate of blood filtration by the nephron) is particularly sensitive to changes in blood pressure. However, with the aid of the myogenic mechanism, the glomerular filtration rate remains very insensitive to changes in human blood pressure.

Myogenic mechanisms in the kidney are part of the autoregulation mechanism which maintains a constant renal blood flow at varying arterial pressure. Concomitant autoregulation of glomerular pressure and filtration indicates regulation of preglomerular resistance. Model and experimental studies were performed to evaluate two mechanisms in the kidney, myogenic response and tubuloglomerular feedback. A mathematical model showed good autoregulation through a myogenic response, aimed at maintaining a constant wall tension in each segment of the preglomerular vessels. Tubuloglomerular feedback gave rather poor autoregulation. The myogenic mechanism showed 'descending' resistance changes, starting in the larger arteries, and successively affecting downstream preglomerular vessels at increasing arterial pressures. This finding was supported by micropuncture measurements of pressure in the terminal interlobular arteries. Evidence that the mechanism was myogenic was obtained by exposing the kidney to a subatmospheric pressure of 40 mmHg; this led to an immediate increase in renal resistance, which could not be prevented by denervation or various blocking agents.